Particle Swarm Optimization Algorithm as a Tool for Profiling from Predictive Data Mining Models

نویسنده

  • Goran Klepac
چکیده

This chapter introduces the methodology of particle swarm optimization algorithm usage as a tool for finding customer profiles based on a previously developed predictive model that predicts events like selection of some products or services with some probabilities. Particle swarm optimization algorithm is used as a tool that finds optimal values of input variables within developed predictive models as referent values for maximization value of probability that customers select/buy a product or service. Recognized results are used as a base for finding similar profiles between customers. The presented methodology has practical value for decision support in business, where information about customer profiles are valuable information for campaign planning and customer portfolio management.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data

The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

Joint inversion of ReMi dispersion curves and refraction travel times using particle swarm optimization algorithm

Shear-wave velocity ( ) is an important parameter used for site characterization in geotechnical engineering. However, dispersion curve inversion is challenging for most inversion methods due to its high non-linearity and mix-determined trait. In order to overcome these problems, in this study, a joint inversion strategy is proposed based on the particle swarm optimization (PSO) algorithm. The ...

متن کامل

Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks

Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...

متن کامل

Design of the Compact Ultra-Wideband (UWB) Antenna Bandwidth Optimization Using Particle Swarm Optimization Algorithm

In this paper a particle swarm optimization (PSO) algorithm is presented to design a compact stepped triangle shape antenna in order to obtain the proper UWB bandwidth as defined by FCC. By changing the various cavity dimensions of the antenna, data to develop PSO program in MATLAB is achieved. The results obtained from the PSO algorithm are applied to the antenna design to fine-tune the bandwi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016